Additive Fertigung

Maßgeschneiderte Bauteile für die Verfahrenstechnik

Additive Fertigung in der Verfahrenstechnik

- Reaktoren, Wärmetauscher und Mischer nehmen in der chemischen Verfahrenstechnik eine Schlüsselstellung ein
- Herstellung dieser Bauteile in einer optimalen Geometrie ist wünschenswert
- Gängige Fertigungsverfahren bieten in der Regel keine völlige 3dimensionale Gestaltungsfreiheit
- Additive Fertigung mittels selektivem Elektronenstrahlschmelzen (SEBM) ermöglicht Verarbeitung metallischer Werkstoffe in komplexer Geometrie

Prototyp eines konusförmigen Reaktors für stark volumenvergrößernde Reaktionen

Prozesskette für die Entwicklung von strukturierten Reaktoren

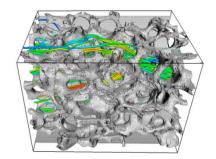
1. Rechnergestütztes Apparatedesign und Optimierung

- Simulation von Strömungsmechanik und Wärmetransport
- Reaktionskinetische Modellierung
- Rationale Reaktorauslegung und -design

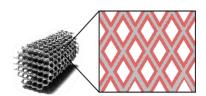
2. Additive Fertigung mittels SEBM-Verfahren

- Völlige 3-dimensionale Gestaltungsfreiheit
- Verarbeitung nahezu sämtlicher metallischer Werkstoffe
- Hohe Bauteilqualität

3. Funktionalisierung der Oberfläche


- Aufbringen katalytisch aktiver Schichten
- Tauchbeschichtung oder Sprühbeschichtung
- Kohlenstoffbasierte oder oxidische Materialien

4. Experimentelle Charakterisierung


- Hydrodynamische Charakterisierung zellularer Strukturen
- Demonstration der überlegenen Performance
- Validierung der zugrundeliegenden Modelle

Anwendungsbeispiel: Dehydrierung von flüssigen organischen Wasserstoffträgern (LOHC)

- Reaktion mit hohem Wärmebedarf und starker Gasentwicklung
- Strukturierter Rohrreaktor mit optimierter Geometrie
- Guter Wärmeeintrag in den Reaktor
- Effiziente Gas-Flüssig-Trennung

Simulation des Strömungsfeldes in einer Schaumstruktur

Schema: Strukturierter Reaktor mit katalytisch aktiver Beschichtung

Strukturierte Reaktoren für die Freisetzung von Wasserstoff

Ihr Ansprechpartner:

Dr.-Ing. Florian Enzenberger Zentralinstitut für Neue Materialien und Prozesstechnik Dr.-Mack-Str. 81 | 90762 Fürth Tel.: +49 911 65078 65112 florian.enzenberger@fau.de www.zmp-uni-erlangen.de

