Cross-platform embedded
system development

With CDP Studio you have a single development tool for all your
customer specific embedded systems.

ARM based embedded devices
Re-use code across platforms
Distributed systems

High level development tools

Project specific solutions
® Reduced development cost

The cost cutting impact of having a single
development platform covering a wide range of
hardware is significant. With embedded devices
running Linux, tools, functional libraries, people skill-
set, etc. is shared across systems. Now you can build
embedded Linux devices much in the same way as
CDP Studio is used for higher level control systems,

removing a significant chunk of low level configuration.

With CDP Studio you can build a distributed control
system with a combination of small embedded Linux
devices, automation controllers, industrial computers,
and even Windows desktop systems. All part of an
integrated system, developed on the same platform.

The following will focus on the embedded end of this
scenario to give some inspiration on how to use CDP
Studio on small Linux powered devices and in
embedded hardware environments, based on the
current standard toolchains that ships with CDP Studio.

Embedded solutions
With the term “embedded Linux” we normally think of

standalone appliances running a tuned, stripped down,

Linux system. Embedded devices are designed to do a
specific task, some also have real-time requirements.
These devices are locked down with a given
functionality, ranging from simple electronic toys, to
marine navigational systems. The simpler products are
delivered "as is”, i.e. no ways to update the software or
ways to interact beyond the operational user interface,
while industrial systems tend to be both configurable
and upgradeable.

CDOPStudio

For customer specific solutions, this is an opportunity
to deliver tailor made solutions, even for low volume
devices. This is where CDP Studio as a development
platform provide the tools to design, configure and
maintain systems, making such customisation a
sensible business case.

Embedded device

For stand alone devices, there is just one run-time
application doing its tasks, running on top of a trimmed
down Linux OS. The end-user will not relate to CDP
Studio as such, it is only used for development and
maintenance of the software application. Examples
here would be devices for data acquisition or
dedicated controllers, probably configured by the end
user via a web interface.

CANopen
12C NMEA
Modbus MQTT
SNMP OPC UA
HTML5 REST API

CDP Technologies AS
Hundsveergata 8 www.cdpstudio.com
P.O. Box 144 Tel: +47 990 80 900

NO-6001 Alesund info@cdptech.com

© CDP Technoplogies AS. Specifications subject to change without prior notice. E&XOE

Cross-platform embedded system development

Customisation

Your product may be delivered in a standard version,
but you also have the freedom to deliver custom
variants. Modifying and enhancing products to fit
specific customers or projects, will in many cases just
be configuration changes, i.e. not require any changes
in the underlying C++ code. Such changes may even be
implemented by the project people, not involving R&D.

Custom configuration o

2

@

Add value to a) Product applications E-,

product by offering 5
customisation of the

executable code

Linux OS g

(]

o

(0]

<.

(2]

(0]

Device Hardware

Taking this a step further, you could provide the CDP
Studio development tool including your function
library to system integrators or system manufacturers.
Then your product is not just open for third party
applications, but you provide a very accessible
development environment for your customers to add
their special knowledge or specific market segment
functionality. Your product has added value!

Distributed systems

Even though embedded Linux products tend to be
standalone devices, most will be attached to a
network. CDP Studio has distributed system design
built into the native application framework, i.e. a
system is several applications working together. The
applications may run on a single computer or
distributed between controllers/computers on an
Ethernet LAN segment. As CDP applications are
abstracted from HW and OS, you may build a hybrid
system solution of several low-level Linux controllers,
a Windows Operator GUI, and a Linux IPC for the heavy
signal processing. CDP Studio let you put functions
where it makes most sense for system ruggedness,
controller performance, combination with other
software, storage capacity, etc..

CD

System builders and integrators will then be able to
focus on the solution, using a single development
environment even if the hardware involved is coming
from multiple vendors. The system as such has then
increased hardware independence!

Hardware

\¥hen it comes to available hardware, CDP Studio
currently has two ARM toolkits relevant for embedded
devices:

- A generic ARM7 toolkit for Debian based systems.
- Adedicated ARMBG toolkit for Raspberry Pi based
hardware running Raspbian.

There is also a range of compact SBCs (Single Board
Computers) running Linux (or Windows) on x86
architecture which could be seen as embedded
devices. Here we just use the generic Linux or
Windows toolkits that comes with CDP Studio.

If we look at relevant ARM based hardware suitable for
CDP Studio projects, the following examples gives a
better picture of the possibilities. In general, if it runs a
Debian derivative, in most cases your CDP applications
will work, using the appropriate toolkit. Be aware that
this is also linked to the CPU platform.

Raspberry Pi and derivatives

The Raspberry Pi ecosystem continue to grow and
while the standard Raspberry Pi is not something you
use for a mission critical control system, it is quite
useful for prototyping and demos. CDP Studio has a
dedicated toolkit for the Raspberry Pi, for use on the
standard Raspbian Linux distribution.

There is also now an increasing range of small
controllers using the Raspberry Pi compute module
(Raspberry CM3), which is a Raspberry Pi 3 in a more
flexible form factor, intended for industrial usage.
Several development kits for the Raspberry CM3
module are available for device design.

E_O”tril}g\r/ll bt The Revolution Pi is such an industrialised system
nux 32b Operator GUI complete with analogue and digital I/0 etc. This boils
System LAN Panel-PC(Windows) down to a capable industrial Linux controller at a
(Ethernet) reasonable price. CDP Studio comes with an 1/0
server for Revolution Pi, so building a controller with
o | S| b atched /0 vore sihioutof o b
Linux ARM32bit (Linux 64bit) : ps: : '
=8 External
1 il interface
Page 2 of 4 © CDP Technologies AS

CDPStudio

Cross-platform embedded system development

Another example geared more towards home control
is the CM3-Home by Guiott (manufactured by Acme
systems). The board fits in a DIN-rail enclosure and has
a range of useful interfaces and proper 12-24VDC
power, but no monitor connector, being a true
headless embedded controller.
(https://www.acmesystems.it/catalog_cm3home)

ARM Barebone hardware

If you are going deeper embedded, then there are
multiple embedded ecosystems and development kits
using the popular ARM architecture. CDP Studio will
need a system that comes with a Debian derivative,
either generic or HW specific builds using e.g. Yocto.

The BeagleBoard.org® ecosystem, the first
completely open-source hardware community, now
over 10 years old. They now have a range of boards
coming from multiple manufacturers, which ship with
Debian Linux . As the BeagleBone® is open-source
hardware, integrating this into your electronics is easily
doable. Variants of the BeagleBone@ may even be
used directly in projects. (https://beagleboard.org/)

The normal approach would be to use a SoM (System
on Module) including development kits or evaluation
boards. An example here is the RoadRunner SoM from
Acme Systems. With its single core Cortex A4
processor at 500MHz, the module is not very powerful,
but still comes with a trimmed down Debian Linux. A
neat package for small devices.
(https://www.acmesystems.it/roadrunner)

© CDP Technologies AS

CD

CDPStudio

There are several similar systems on the market, and
with CDP Studio as a single development tool you will
cover the full range from a tiny Cortex device to a
powerful server workhorse. There is also the more
powerful x86 based devices for specific markets, like
the Marine computer below.

Courtesy of Recab AB

Toolchains, framework, and IDE

Using CDP Studio, the target applications run compiled
code using linked libraries, which means the
processing speed is as fast as it gets, hence utilising
the hardware in an optimum way.

As hardware is increasingly more capable at reduced
cost, size, and power consumption, application
execution speed is not the only parameter. This is
especially true for customer or project specific
solutions; the development time of a system is the only
place to save significant project cost.

CDP Studio is a complete development environment,
implying that the maintenance of the overall tool is
managed for you. CDP Studio is not just the IDE, but
comes with a development framework geared towards
control systems and real-time computing, a set of
standard functions and protocols, and finally toolkits
for several hardware platforms. If you need a product
specific toolkit, we can build it as a separate add-on to
the standard CDP Studio.

Page 30f 4

Page 4 of 4

Cross-platform embedded system development

CDP Studio may be seen as a layered “stack” of
functionality as illustrated in the figure.

Be competitive
System design

Improve usability GUI / HMI design

Save SW resources L
Application assembly

Your own CDP
components components

Add value

Buipoy uoneinbyuod waisAs

Save investment

CDP framework

Toolkit Toolkit
Linux indows

Hardware / OS

ylomawel

Toolkit

Independence

Ui 0l

Framework

One important aspect is the hardware abstraction
achieved through a comprehensive framework,
combined with complete toolchains for several
HW/0OS platforms. This is how you can develop on
Windows, and even test most aspects of applications
on Windows before they are compiled and deployed
to the target hardware. CDP Studio covers the full
range from Linux devices to Windows desktop
systems, where functions are shared across all
platforms. The hardware independence and the
amount of time saved by the readymade complete
toolkits included in CDP Studio, are great cost savers.

Coding

“Components” are the main building blocks in CDP
based applications. A Component is basically a run-
time C++ program, a component could cover anything
from standard protocol implementations to customer
specific algorithms. This is where CDP Studio removes
much of the effort of developing in C++, as almost
everything in the code except the logic itself is
generated for you, using the graphical IDE. CDP Studio
comes with an extensive library of standard functions,
to which developers add their own components. This is
where you build reusable added value.

System configuration

When it comes to configuration and assembly of the
actual application, there is no coding involved. For
customer projects, you need people closer to the end-
customer, a different skill-set than C++ component
development. In addition, CDP Studio has a full-blown
GUI editor with a library of readymade widgets, to build
graphical user interfaces, as a part of the solution.

CD

Important is also the tools for testing and run-time
analysis, all done from inside the IDE. As an example;
you can tweak parameters on a running system while
monitoring live signals and variables.

The final compiling and deployment on the target
system is also controlled from the graphical IDE, which
takes away a significant source of trouble and wasted
time.

Configurable embedded systems, a business
opportunity

With CDP Studio you can transform your application
knowledge into function components as building
blocks in your system design. Your knowledge can be
distilled into your own library of CDP Components and
reused as configurable functions without modifying
the component C++ code.

The framework of a development tool like CDP Studio
is important, as the developers should be “helped” into
a common design structure, to safeguard quality and
make the solutions better maintainable. Team
collaboration is also a part of this to enable sharing
and re-use of components, as well as speeding up
large projects. A comprehensive tool, like CDP Studio,
where the complete tool is released and updated as
one package, is closer to an industrial mindset than
handling a suite of independent tools. Industrial
computing still differs to IT systems by longer update
cycles and expected lifetime.

The freedom and power of software-based control
systems is usable in industrial applications only if the
development process is structured and the solution as
such is possible to maintain for the lifetime of the
system. With an efficient development system like
CDP Studio, even single project usage of embedded
Linux devices is feasible with a reasonable
development cost.

CDPStudio

© CDP Technologies AS

CDPStudio

