

CIRCULAR SAW BLADES

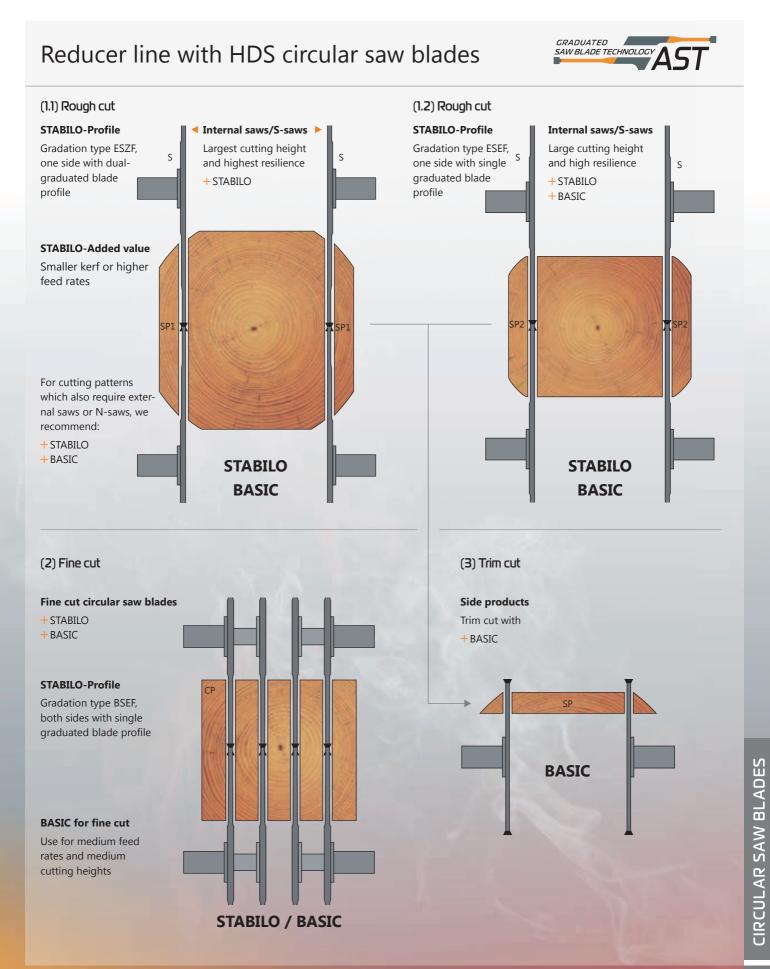
- 14 Technology
- 23 Regeneration
- 24 BASIC circular saw blades
- 30 STABILO circular saw blades
- 36 TRIMCUT circular saw blades
- 40 CROSSCUT circular saw blades

SoWa . Our road to perfect sawmill tools

A circular saw blade - or broadly speaking - a sawmill tool can only convince with optimal performance and high stability if the sawmill tool is designed as closely as possible to the special working conditions at the sawmill. "Sawmill Optimised Tool Design", "SoWa" for short, is therefore also the essence of our HDS philosophy. We're convinced this is the only way to achieve outstanding sawmill tool quality. The fact HDS-Sawmill Tools are being used in high capacity sawmills domestically and internationally confirms this approach. Benefit from our "SoWa Sawmill Optimised Tool Design" for your saw line.

HDS circular saw blade for rough cuts

Rough cutting exposes circular saw blades to extreme strain. Increasing feed rates and large cutting heights not only require an optimal design, but also an extremely durable material quality as well as precise machining. It's not a surprise, since speed, kerfs and cutting heights greatly contribute to productivity, thus the profitability of the saw line.


The goal is for each sawmill to be identical at the core, since generally the same success factors apply:

- + Reducing kerfs
- + Increasing feed rates
- + Increasing cutting heights
- + Increasing the cutting quality

The competing goals can only be realised at a balanced ratio. Today, the "AST Graduated Saw Blade Technology" allows us to optimise this magic ratio even more. The introduction of the "graduated" STABILO circular saw blade has allowed sawmills to operate much more efficiently. To achieve the greatest lumber yield possible with also a preferably high feed rate in rough cutting, we only recommend STABILO class circular saw blades with Graduated Saw Blade Technology (AST) designed specifically for your cutting jobs. Featuring high dynamic rigidity, our STABILO can handle even extreme strain such as in rough cutting due to the different cutting heights combined with high feed rates. The high stability of the circular saw blade body allows for the minimal kerf design in STABILO. Reducing the kerf in turn results in lower cutting force, thus reducing the energy requirement. In addition, the lumber yield is increased so that with certain cutting programs, moving to the next greater log diameter or the next larger box in the log yard can be avoided – or more fittingly – "spared".

Trust in the highly efficient STABILO with "AST Graduated Saw Blade Technology" for rough cuts and use our "SoWa Sawmill Optimised Tool Design" for a premium product to best fit your cutting program, thus already guaranteeing a crucial competitive advantage in rough cutting.

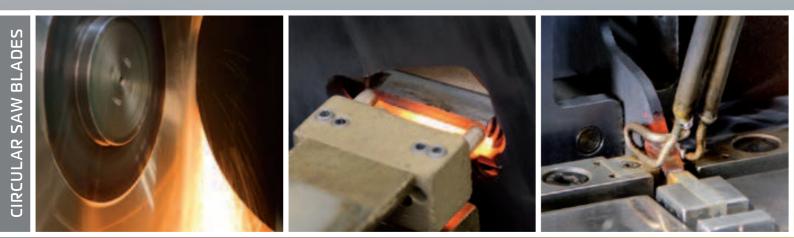
HDS. THE SAWMILL TOOL COMPANY

AST . Graduated Saw Blade Technology

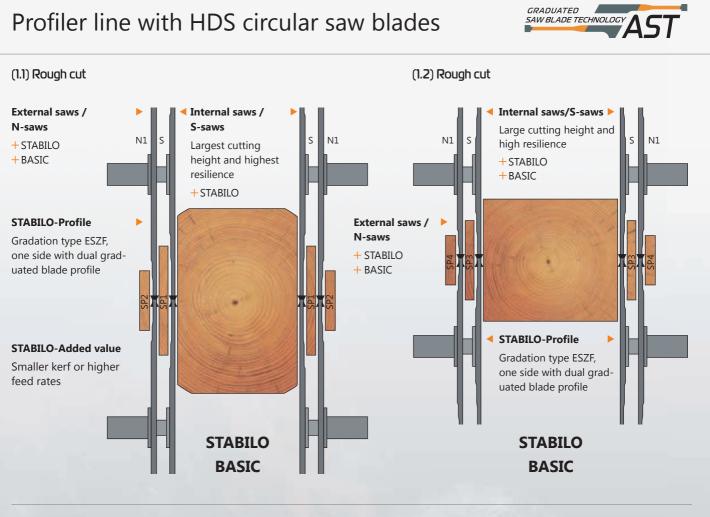
No innovation has impacted the development of high-performance circular saw blades for use in sawmills in recent years as much as "AST Graduated Saw Blade Technology". Now, mature and proven designs are available to ensure maximum performance Sawmill Optimised Tool Design (SoWa) with outstanding stability.

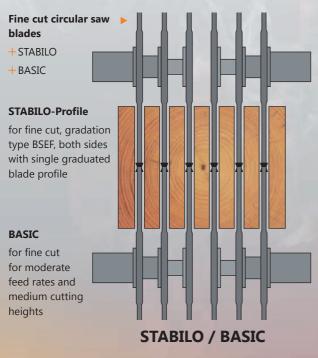
Our STABILO combines the AST performance advantages in a circular saw blade designed to our standard in performance and quality.

HDS circular saw blade for fine cut


For efficient fine cuts with a high feed rate we always recommend our STABILO fine cut circular saw blade graduated on one or both sides. The STABILO blade profile developed specifically for fine cutting effectively compensates the laterally balanced relative strength which occurs when sawing consistent medium to high cutting heights with. This even allows minimal kerfs in fine cuts.

After increasing lumber yield in rough cutting, STABILO – the second time now – increases the recovery rate in fine cuts. Over the year you virtually benefit from this competitive edge in double.

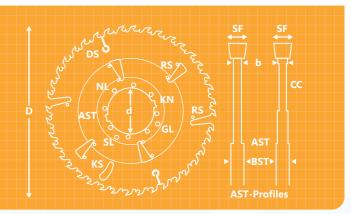

Our tried and tested BASIC is excellent for trim cuts with low cutting heights and high feed rates. Our "SoWa Sawmill Optimised Tool Design" philosophy also applies here. It requires analysing your machine data, the desired feed rates, the cutting height of the primary product, as well as the type of wood to be cut for us to design a particularly efficient circular saw blade.


GRADUATED SAW BLADE TECHNOLOGY

Take advantage of this development concept, since high-quality HDS-Sawmill Tools offer profitable advantages, shift after shift, day after day, and year after year!

16

(2.1) Fine cutting using telescopic shafts


(2.2) Fine cutting with fixed mount Fine cut circular saw blades + STABILO + BASIC HDS -**STABILO-Profile** Distance for fine cut, gradation rings type BSEF, both sides with single graduated blade profile BASIC for fine cut for moderate feed rates and medium cutting heights **STABILO / BASIC**

CIRCULAR SAW BLADES

Body of circular saw blade

A circular saw blade for heavy duty use in sawmills is the result of constructing countless design characteristics to the exact conditions at your sawmill based on the specific cutting program, machine type and the type of wood. It requires a precise analysis of the application for us to design a circular saw blade optimal for its subsequent application.

Here we will briefly introduce you to the key design characteristics of the saw body.

18

STABILO for rough cut

Gradation type ESZF

Individual blade profile

The blade profile crucial for dynamic rigidity is calculated specifically to your cutting program according to "SoWa Sawmill Optimised Tool Design" for each STABILO circular saw blade, incorporating over 30 factors. Here we offer two basic designs, the blade profile graduated on one side or on both sides.

For rough cut: STABILO featuring one side with graduated blade profile

The profile with single or dual gradation on one side is usually used in rough cutting. The different cutting heights result in lateral, varying secondary forces. The blade profile gradation on one side compensates this imbalance so the extreme dynamic rigidity has a positive effect.

For fine cut: STABILO featuring both sides with graduated blade profile

The reduced and nearly even cutting heights in fine cutting result in a more balanced relative strength. The high dynamic rigidity also has an extremely positive effect here, allowing for a reduction of the kerf.

AST-Gradation types ESEF : single gradation on one side ESZF : dual gradation on one side

The HDS plus factors of STABILO

- + Individual blade profile is crucial for the dynamic rigidity and is designed and calculated individually considering all factors
- + Smaller kerf or higher feed rate by dynamic rigidity of the tried and tested "AST Graduated Saw Blade Technology"
- + Energy saving compared to straight circular saw blades by reducing the kerf
- + Long service life due to the extremely massive saw body, hence suitable for several regeneration cycles
- Reduced bearing load through the use of smaller distance rings
- + Lower level of heating in the tooth area, which is the thinnest area of the circular saw blade, thus minimising the frictional heat of sawdust
- + Chip clearance slots facing, protecting the collar from excessive heating, thus burns, on the model end

AST-Gradation types

BSEF : single gradation on both sides BSZF : dual gradation on both sides

CoolCut CC

STABILO for

fine cut

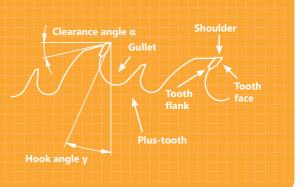
Gradation type BSEF

CoolCut 🕨

Our BASIC and STABILO circular saw blades are available with "CoolCut" option on request. Here a slight reduction is added to the outside of the circular saw blade.

Just as AST, CoolCut provides thermal relief of the saw body, allowing a reduction in the kerf or selecting very high feed rates.

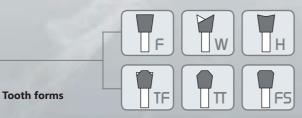
The reduction at the tooth base can be scaled back, enlarging the solder area for TCT and stellit teeth, thus ensuring more sturdy tooth tipping.


The "double CoolCut" option is available to increase the CoolCut effect.

Tooth geometry

There's a lot happening at the tooth area of a circular saw blade. The small tungsten carbide or stellit saw teeth chip away the shavings which then seemingly storm about the gullet, are again broken up by the Plus-tooth and then hastily ejected by the spin of the circular saw blade.

The better the cutting material, tooth form, tooth type and tooth geometry are coordinated for the subsequent application, the higher the performance of the circular saw blade.



Cutting materials

In the sawmill industry, tungsten carbide (TC), stellit (ST) and chromium-vanadium steel (CV) are three cutting materials used for saw teeth, where an inexpensive CV tooth comes directly from the straight-set circular saw body and therefore cannot be tipped. Available for HDS circular saw blades:

- + TC application-optimised tungsten carbide styles in four quality levels HWQ: HDS01 to HDS04
- + ST stellit, particularly tough and robust cutting material
- + CV chromium-vanadium steel for inexpensive straight-set standard circular saw blades

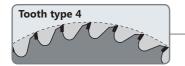
HDS circular saw blades primarily feature universal, easy to sharpen flat teeth. Other shapes are available of special applications.

- + F Flat tooth
- + W Alternate top bevel tooth
 - H Hollow tooth
- + TF Triple chip flat tooth
- TT Triple chip triple chip tooth
- FS Flat tooth with protective chamfer

Saw tooth

STABILO Hexa CC

Dimensions	510 x 4.7/3.5/4.9 x 150 mm
Teeth	18 TCT teeth . Tooth form flat tooth . Tooth type 4 Plus Hexa style with 6 chip clearance slots
Features	AST Graduated Saw Blade Technology, gradation type ESEF one side with single gradation from 4.9 to 3.5 mm . CoolCut CC
HDS-No.	12388


General tooth types

In addition to tipping and the construction of the saw body, the tooth type is an important factor in optimising the cutting performance and cutting quality as well as stability and service life.

- KV tooth type (peg tooth)
 Long- and cross-cut, tungsten carbide/stellit tipped
- + PV tooth type (curved tooth) Long- and cross-cuts, primarily stellit tipped
- NV Tooth type (pointed tooth) mostly for cross-cuts and for straight-set circular saw blades

The KV tooth type was greatly modified for high-performance areas at the sawmill. This resulted in special, extremely powerful sawmill tooth types.

General tooth types

The HDS-standard

Tooth type 4

The universal tooth type 4 suitable for rough and fine cuts as well as long and cross cuts is the standard tooth type and characterised by the particularly large gullet. The gullet is even able to collect and eject and adequate amount of sawdust with high feed rates or large cutting heights. The radial shape of the gullet aids in ejecting the sawdust.

Profile

- + Consistent tooth heights
 - + Consistent pitch
 - + Large gullet

HT High-Low

The modified tooth type 4 allows for different cutting heights to be processed with greatly varying feed rates using a single circular saw blade type. This eliminates the blade change and the associated set-up costs. It further reduces the expenditure of acquisition and storage, since a limited cutting area only uses one specific circular saw blade type. The tooth type therefore greatly contributes to the profitability of your production line.

- Profile
- + Varying tooth heights + Consistent pitch
- + Large gullet

Sawmill tooth types

Tooth type 4 Plus

When we developed "tooth types 4 Plus" our focus was on optimising chip removal. The striking "Plus-tooth", also referred to as intermediate tooth, splits the gullet and improves saw dust ejection as well as the chip flying outward. This eliminates sawdust friction between the circular saw blade and material being cut, as well as the sawdust clumping together in the gullet. Reducing the strain on the circular saw blade allows for a smaller kerf.

Profile

- + Consistent tooth heights + Consistent pitch
- + Plus-tooth for improved chip ejection & chipping

HT High-Low Plus

The "HT Plus" tooth type combines the strengths of HT teeth and the "Plus-tooth". On one hand this allows a wide range of different cutting heights and different feed rates to be processed without changing the circular saw blade, and on the other hand the intermediate tooth the improved sawdust ejection from the additional tooth in the gullet minimises the thermal strain on the circular saw blade.

Profile

- + Consistent pitch
- + Plus-tooth for improved chip
 - ejection & chipping

+ Varying tooth heights

UZ Varying tooth pitch

The UZ tooth type is of particular interest for trim- and fine cutting units. The alternating tooth heights and the uneven pitch allow the UZ tooth type to be used efficiently for fine cuts for large cutting heights with low feed rates as well as for trimming with significantly lower cutting heights at high feed rates.

Profile

+ Varying pitches

+ Varying tooth heights

+ Large gullet

UZ Plus

Tooth type "UZ Plus" combines the advantages of this tooth type with the benefits of the "Plus-tooth". The effective chip ejection and the improved chip break reduce friction and heat so the circular saw blade allows a reduced kerf.

Profile

Varying tooth heights Varying pitches Plus-tooth for improved chip ejection & chipping

HDS CIRCULAR SAW BLADE

		BASIC	STABILO	TRIMCUT	CROSSCUT
sw SoWa		•	•	•	•
SAWMILL OPTIMISED TOOL DESIGN	Diameter max.	1.200 mm	900 mm	1.900 mm	2.800 mm
	Rough cut	0	•		
Application	Fine cut	•	•	0	
	Trimm/cross cut		0	•	
GRADUATED SAW BLADE TECHNOLOGY	AST one side		•		
ASI	AST both sides		•		
	CoolCut CC	•	•		
CoolCut CC	double CoolCut dCC	•			
TCT Chip clearance slots	Without chip clearance slots	0	0	•	
2 Duo / 3 Tria / 4 Tetra / 6 He	xa / 8 Octo / 10 Deka	•	•		
	Expansion slots	•	•	•	
Vibration and Noise Reduction	Copper rivets	0		•	
	Noise reduction slots	0		•	
	Tooth type 4	•	•	•	
Sawmill tooth types	HT High-Low	0	0		
	UZ Variyng tooth pitch	0	0		
Plus-Tooth	Intermediate tooth ZZ		0		
S 77	CV chromium-vanadium	0		0	
Cutting metavial	TC tungsten carbide	•	•	•	
Cutting material	ST stellit		•	0	
	TC tipped insert				•
	Grinding style	•	•	•	•
Surface style	Spiral style		•	0	
	Polished		0	0	
Surface contine	Oxide		•	•	
Surface coating	Chrome	0	0	0	

Very suitable / absolutely true

Somewhat suitable / sometimes true

REGENERATION

A second life for your used sawmill tools

Used doesn't mean used up, since your sawmill tool can often be repaired or regenerated, which is much more economical compared to a new purchase.

Sawmill tools can be repaired to HDS quality standards straight at our factory. For particularly high quality circular saw blades, segments and sizing rings, usually equipped with a particularly robust "AST Graduated Saw Blade Technology" saw body, complete

regeneration is usually wise and offers great economic benefits. This process can be repeated several times, increasing the life of your sawmill tool by x-fold.

Let us repair or regenerate your sawmill tool. In most cases this will delay a new purchase and we will return your "used blade" like new!

ATTACHMENT Dimensions **Operating times** Sharpening cycles **Regeneration cycles REVIEW** + Chip characteristics

Regeneration

4. Solder on new

5. Level and grind 6. Straight and tension

cutting material

SAWMILL

Circular saw blades Segments Sizing rings Inserts

Inspect to HDS regeneration standards

REGENERATION

- 1. Sort and clean
- 2. Remove old
- cutting material
- 3. Prepare tip seat

+ Wear level saw body

- + Wear level cutting material
- + Straightening state
- + Tensioning state

BASIC

Dimensions	655 x 5.1/4.0 x 142 mm
Teeth	30 TCT teeth . Tooth form flat tooth . Tooth type 4 Style with 9 chip clearance slots
Features	9 pin holes 11 mm on pitch circle 248 mm . 6 pin holes 11 mm on pitch circle 165 mm . 3 knife slots
HDS-No.	13629

Our BASIC already defines the HDS quality standard

BASIC is the result of decades of experience which continuously impacted the development process of the technologies used. So you now have a highly optimised, and tried and tested circular saw blade with numerous optional refinements.

We already draw on the highest quality materials when manufacturing the saw body. The respective heat treatments we select support the high HDS standard.

BASIC is manufactured precisely to your needs, so every piece of information about the specific operating conditions at your sawmill impacts the construction of your BASIC.

The additional application of our CoolCut option further perfects the performance of the circular saw blade with regard to optimal chip transport, preventing excess heating, reducing the kerf, extending the service life and/or increasing the feed rate.

The HDS plus factors of BASIC

+ Extremely smooth running

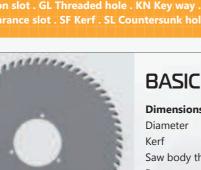
Even our BASIC is extremely smooth running, achieved by incorporating the internal tensioning in the special saw body style. These exemplary running properties contribute to increasing the stability of the circular saw blade.

+ Deflection-free cuts

Even at a peak load our BASIC keeps its shape, since the optional expansion slots with optional end hole or expansion slots with copper rivets limit thermal expansion. This ensures deflection-free cuts.

+ Reduced blade heating

In most cases the BASIC blade features TCT chip clearance slots, significantly reducing heating of the saw body. Our special geometry and the machined contour of the chip clearance slots ensure very little sawdust collects.


+ Reduced kerf

Select the option "CoolCut" or "double CoolCut" to reduce the kerf. A reduction is then applied to the outside of the saw blade, reducing excessive heating to the point the overall construction can be designed with an even thinner kerf.

The "SoWa Sawmill Optimised Tool Design" make for maximum level circular saw blades for industrial sawmill use. Your circular saw blades are coordinated to your specific requirements and operating conditions. Using the technical data in our database and 3D CAD models production of your circular saw blades can always be automated and is reproducible.

b Saw body thickness . CC CoolCut . D Diameter . d Bore DS Expansion slot . GL Threaded hole . KN Key way . NL Pin hole RS Chip clearance slot . SF Kerf . SL Countersunk hole

Dimensions	
Diameter	350.0 mm
Kerf	4.8 mm
Saw body thi	ckness 3.2 mm
Bore	100.0 mm
Key ways	0
Pin-/counter	sunk holes 3

Cutting material
Number of teeth
Tooth form
Tooth type

Profile CC Profile

4

HDS-No. 14198

BASIC

Dimensions 355.0 mm Diameter Kerf 3.2 mm Saw body thickness 2.2 mm Bore 75.0 mm Key ways 2+2 Pin-/countersunk holes 0

Cutting material
Number of teeth
Tooth form
Tooth type

тст 40 F

4

- Features **Expansion slots**
 - 4

HDS-No. 13269

HDS-No. 15432

Features

Cooling slots/holes 6+6

Dimensions

BASIC

445.0 mm Diameter 3.6 mm Kerf Saw body thickness 2.6 mm 80.0 mm Bore 0 Key ways 6 Pin-/countersunk holes

Cutting material
Number of teeth
Tooth form
Tooth type

тст 36 F 4

тст

32

F

4

Expansion slots	4

BASIC Dimensions Diameter 610.0 mm Kerf 4.0 mm Saw body thickness 2.8 mm 139.7 mm Spline-Bore

Pin-/countersunk holes

Key ways

Cutting material Number of teeth Tooth form Tooth type

0

0

26

TCT- and ST-Circular saw blades

BASIC Duo

Dimensions	
Diameter	300.0 mm
Kerf	3.6 mm
Saw body thickness	2.4 mm
Bore	80.0 mm
Key ways	2+2
Pin holes	0

тст
16+2
F
4

BASIC Duo

Dimensions Diameter 450.0 mm Kerf 4.6 mm Saw body thickness 3.2 mm Bore 105.0 mm Key ways 2+2 Pin-/countersunk holes 0

Cutting material	тст	Features
Number of teeth	44+2	Expansion slots
Tooth form	F	
Tooth type	4	

HDS-No. 13254

2

HDS-No. 10868

HDS-No. 14338

BASIC Tria

Dimensions Diameter 470.0 mm Kerf 3.2 mm Saw body thickness 2.0 mm Bore 150.0 mm Key ways 2+2 Pin-/countersunk holes 0

Cutting material	тст
Number of teeth	30+3
Tooth form	F
Tooth type	4

HDS-No. 14673

Dimensions

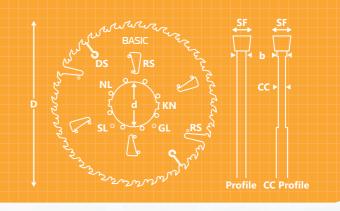
BASIC Tria

Diameter 500.0 mm Kerf 5.8 mm Saw body thickness 4.0 mm Bore 140.0 mm Key ways 0 8 Pin-/countersunk holes

Cutting material	ST
Number of teeth	48+3
Tooth form	W
Tooth type	4

HDS-No. 10077

BASIC Tria Plus


Dimensions	
Diameter	535.0 mm
Kerf	2.8 mm
Saw body thicknes	ss 1.8 mm
Bore	150.0 mm
Key ways	2+2
Pin-/countersunk holes	

Cutting material	тст
Number of teeth	36+3
Footh form	I
footh type	4 Plus

CIRCULAR SAW BLADES

The "SoWa Sawmill Optimised Tool Design" make for maximum level circular saw blades for industrial sawmill use. Your circular saw blades are coordinated to your specific requirements and operating conditions. Using the technical data in our database and 3D CAD models production of your circular saw blades can always be automated and is reproducible.

b Saw body thickness . CC CoolCut . D Diameter . d Bore DS Expansion slot . GL Threaded hole . KN Key way . NL Pin hole RS Chip clearance slot . SF Kerf . SL Countersunk hole

BASIC Tetra

Dimensions 470.0 mm Diameter Kerf 5.0 mm Saw body thickness 3.4 mm Bore 130.0 mm 2 Key ways 12 Pin-/countersunk holes

BASIC Tetra Plus

490.0 mm

150.0 mm

2+2

4.4 mm

Dimensions

Diameter Kerf

Bore

Cutting material	тст
Number of teeth	52+4
Tooth form	W
Tooth type	4

Features Bevelled gullet

HDS-No. 10423

HDS-No. 15416

Key ways Pin-/countersunk holes 0

Saw body thickness 3.0 mm

Cutting material	TCT
Number of teeth	36+4
Tooth form	ł
Tooth type	4 Plus

HDS-No. 16885

BASIC Tetra Plus

Dimensions Diameter 507.0 mm Kerf 5.0 mm Saw body thickness 3.6 mm 120.0 mm Bore 0 Key ways Pin holes 2 x oval+4

Cutting material	тст
Number of teeth	18+4
Tooth form	F
Tooth type	PV Plus

HDS-No. 15454

Dimensions Diameter 450.0 mm Kerf 4.4 mm Saw body thickness 3.0 mm Bore 115.2 mm 0 Key ways Pin-/countersunk holes 2+16

BASIC Hexa Plus

Cutting material	тст
Number of teeth	30+6
Tooth form	F
Tooth type	4 Plus

28

CIRCULAR SAW BLADES

TCT- and ST-Circular saw blades

Diameter	490.0 mm
Saw body thickness	5.6 mm
Kerf	4.2 mm
Bore	150.0 mm
Key ways	2+2
Pin-/countersunk holes 0	

Cutting material	тст
Number of teeth	36+6
Tooth form	F
Tooth type	4 Plus

HDS-No. 10413

HDS-No. 14287

2

Features

Expansion slots

BASIC Hexa dCC Plus

Dimensions Diameter 545.0 mm Kerf 4.6 mm Saw body thickness 3.1 mm Bore 150.0 mm Key ways 2+2 Pin-/countersunk holes 0

Cutting material	тст
Number of teeth	18+6
Tooth form	F
Tooth type	4 Plus

double CoolCut dCC

HDS-No. 11264

BASIC Hexa Plus

Dimensions

Diameter 550.0 mm Kerf 4.8 mm Saw body thickness 3.4 mm 60.0 mm Bore Key ways 0 Pin-/countersunk holes 0

Cutting material	тст
Number of teeth	24+6
Tooth form	F
Tooth type	4 Plus

BASIC Octo dCC Plus

Dimensions

Diameter 780.0 mm Kerf 6.0 mm Saw body thickness 4.1 mm 160.0 mm Bore Key ways 2 Pin-/countersunk holes 6

Cutting material	тст
Number of teeth	20+8
Footh form	W
Tooth type	4 Plus

double CoolCut dCC

HDS-No. 13817

Features

Expansion slots 2

BASIC Deka

Dimensions	
Diameter	695.0 mm
Kerf	5.9 mm
Saw body thickne	ss 4.0 mm
Bore	120.0 mm
Key ways	0
Pin-/countersunk holes 8	

тст
28+10
F
4

HDS-No. 11162

HDS. THE SAWMILL TOOL COMPANY

STABILO Remscheid Germany

Dimensions	648 x 5.4/3.65/6.8 x 160 mm
Teeth	14 TCT teeth . Tooth form alternate top bevel tooth . Tooth type 4 Plus Deka style with 10 chip clearance slots
Features	AST Graduated Saw Blade Technology, gradation type ESZF one side dual gradation from 6.8 to 3.65 mm . CoolCut
HDS-No.	11235 L / 11236 R

STABILO . Graduated to the advanced technology saw class

Developing the Graduated Saw Blade Technology AST first allowed sawmills to optimise their productivity long term. Now, high-capacity reducing and profiling lines primarily use the Graduated Saw Blade Technology AST.

The striking STABILO circular saw blades allow for small kerfs in rough and fine cutting, particularly with markedly high feed rates and large cutting heights, and feature a high durability to convince you. Renowned machine manufacturers therefore equip their particularly strong rough cutting aggregates, and increasingly even fine cutting units, with graduated circular saw blades.

Just as our BASIC circular saw blades, we can additionally integrate CoolCut into the STABILO graduated blade profile.

The HDS plus factors of STABILO

+ Individual blade profile

No two STABILO are alike, since each circular saw blade has a custom blade profile taking your cutting program into account, with single or dual gradation on one or both sides. This always ensures the optimal dynamic rigidity which the outstanding performance of the STABILO class is based on.

Reduced kerf or increased feed rate

The particularly high dynamic rigidity of the core achieved using the Graduated Saw Blade Technology yields two particularly beneficial options. For one, the kerf can be reduced whilst maintaining the feed rate, and on the other hand the feed rate can be reduced whilst maintaining the kerf. Both result in a significant increase in efficiency.

Energy saving

Compared to a straight circular saw blade, STABILO is a true energy saved, since the kerf reduction generates less pressure, which in turn results in energy savings for you.

+ Long service life

The name "STABILO" alone suggests the extremely solid and robust saw body, which in and of itself already means a long life and further allows for multiple regenerations.

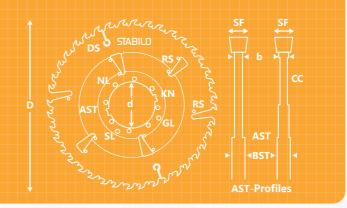
Low level of heating

With the thinnest point of the STABILO circular saw blade being at the tooth area, the frictional heat generated by sawdust here is reduced significantly. This factor, which is so critical in stability, can be further enhanced by the CoolCut option.

Chip clearance slots facing

The STABILO can optionally also use facing chip clearance slots, which protects the collar from excessive heating, thus burns, on the model end.

Reduced bearing load


Using smaller distance rings significantly reduces strain on the bearing load on the shaft. In addition it makes it easier to handle when changing the circular saw blade, since it only requires distance rings in the machine flange diameter.

Our "SoWa Sawmill Optimised Tool Design" ensures you will have a top class STABILO circular saw blade customised for industrial use at your sawmill. Here we draw on our decades of experience and incorporate every single detail of your requirements such as machine model, cutting program, and the type of wood. This optimisation process ensures you receive a STABILO which is best matched to your cutting production, thus extremely efficient.

b Saw body thickness . BST Collar thickness . CC CoolCut . D Diameter d Bore . DS Expansion slot . GL Threaded hole . KN Key way NL Pin hole . RS Chip clearance slot . SF Kerf . SL Countersunk hole

AST-Type

Dimensions		
Diameter	490.0	mm
Kerf	3.3	mm
Saw body thickness	2.3	mm
Bore	150.0	mm
Key ways		2+2
Pin-/countersunk ho	oles	0

Cutting material	ST
Number of teeth	32+4
Tooth form	F
Tooth type	4

CoolCut CC

HDS-No	o. 14899

BSEF Collar diameter 313.0 mm Collar thickness 5.3 mm

Kerf Bore

STABILO Tetra dCC

Dimensions

Diameter 520.0 mm 4.0 mm Saw body thickness 2.6 mm 125.0 mm 0 Key ways Pin-/countersunk holes 4+8

Cutting material	TCT
Number of teeth	36+4
Tooth form	W
Tooth type	4
double	dCC

HDS-No. 13617

AST-Type	ESEF
Collar diameter	190.0 mm
Collar thickness	6.0 mm
Features	
Expansion slots	2

HDS-No. 15924

STABILO Tetra

Dimensions

Dimensions

Diameter

Key ways

Kerf

Bore

Diameter 540.0 mm Kerf 4.0 mm Saw body thickness 2.6 mm 150.0 mm Bore 2+2 Key ways Pin-/countersunk holes 0

STABILO Tetra

Saw body thickness 2.3 mm

Pin-/countersunk holes 0

540.0 mm

150.0 mm

2+2

3.6 mm

Cutting material
Number of teeth
Tooth form
Tooth type

Cutting material

Number of teeth

Tooth form

Tooth type

тст 18+4 F 4

AST-Type	BSEF
Collar diameter	260.0 mm
Collar thickness	4.0 mm
Features	
Expansion slots	4

HDS-No. 13029

n

тст 46+4 F 4

AST-Type	ESE
Collar diameter	324.0 mr
Collar thickness	4.6 mr

TCT- and ST-Circular saw blades

STABILO Hexa

Dimensions	
Diameter	505.0 mm
Kerf	5.0 mm
Saw body thickn	ess 3.6 mm
Bore	120.0 mm
Key ways	0
Pin-/countersunk holes	

Cutting material	
Number of teeth	1
Tooth form	
Tooth type	

тст	AST-Type
38+6	Collar diameter
F	Collar thickness
4	

18+

4 Plu

ESEF
285.0 mm
6.8 mm

HDS-No. 11657

HDS-No. 13745

STAB	ILO He	xa CC	Plus

Dimensions Diameter

Dimensions

Diameter

Kerf

Bore

Key ways

Dimensions

Diameter

Key ways

Pin-/countersunk holes

Kerf

Bore

505.0 mm Kerf 5.4 mm Saw body thickness 3.8 mm Bore 120.0 mm Key ways 0 2 oval + 4 SL Pin holes

STABILO Hexa Plus

Saw body thickness 3.65 mm

Pin-/countersunk holes 4+8

STABILO Hexa CC

507.0 mm

120.0 mm

160.0 mm

2

8

0

5.2 mm

Cutting material	тст
Number of teeth	24+6
Tooth form	F
Tooth type	PV Plus

CoolCut CC

Cutting material

Number of teeth

Tooth form

Tooth type

AST-Type ESEF 190.0 mm Collar diameter Collar thickness 6.8 mm

Features 2 Expansion slots

HDS-No. 16452

	nD.	J 110. 10452
тст	AST-Type	ESZF
18+6	Collar diameter	186.5 mm
F	Collar thickness	6.8 mm
Plus	Features	

Expansion slots 2

HDS-No. 14316

Cutting material 540.0 mm 5.0 mm Tooth form Saw body thickness 3.7 mm Tooth type

CoolCut CC

тст 50+6 Number of teeth E

AST-Type Collar diameter Collar thickness

ESEF 310.0 mm 6.8 mm

STABILO Hexa CC Plus

Dimensions	
Diameter	540.0 mm
Kerf	4.0 mm
Saw body thickne	ss 2.5 mm
Bore	150.0 mm
Key ways	2+2
Pin-/countersunk	holes 0

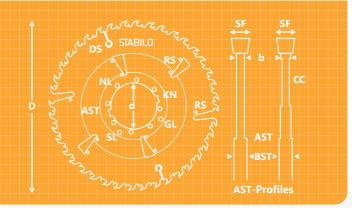
Cutting material Number of teeth 46+6 Tooth form Tooth type 4 Plus

тст

F

AST-Type

HDS-No. 11478 **ESEF** Collar diameter


285.0 mm Collar thickness 4.5 mm

HDS. THE SAWMILL TOOL COMPANY

Our "SoWa Sawmill Optimised Tool Design" ensures you will have a top class STABILO circular saw blade customised for industrial use at your sawmill. Here we draw on our decades of experience and incorporate every single detail of your requirements such as machine model, cutting program, and the type of wood. This optimisation process ensures you receive a STABILO which is best matched to your cutting production, thus extremely efficient.

b Saw body thickness . BST Collar thickness . CC CoolCut . D Diameter d Bore . DS Expansion slot . GL Threaded hole . KN Key way NL Pin hole . RS Chip clearance slot . SF Kerf . SL Countersunk hole

Dimensions 565.0 mm Diameter

STABILO Hexa

Kerf 5.2 mm Saw body thickness 3.4 mm Bore 160.0 mm 2 Key ways Pin-/threaded holes 6+12

Cutting material
Number of teeth
Tooth form
Tooth type

тст	AST-Type
12+6	Collar diamete
F	Collar thicknes
4	Features

AST-Type

С

С

AS

Co

Cc

Fe

Ex

42+

AST-Type	BSEF
Collar diameter	205.0 mm
Collar thickness	7.0 mm
Features	
Expansion slots	2

HDS-No. 11614

HDS-No. 15320

ESEE

mm

mm

Marine .	STA
No.	Dimens
	Diamet
	Kerf
	Saw bo
	Bore
17	Key way
	Pin-/co

BILO Hexa CC

sions

Dimensions

Diameter

Key ways

Dimensions

Countersunk-/ threaded holes

Diameter

Kerf

Bore Key ways

Kerf

Bore

er 570.0 mm 2.7 mm dy thickness 1.7 mm 150.0 mm 2+2 VS untersunk holes 0

STABILO Hexa CC

Saw body thickness 3.6 mm

Pin-/countersunk holes

STABILO Hexa

Saw body thickness 3.8 mm

585.0 mm

145.0 mm

643.0 mm

160.0 mm

5.8 mm

2

6+12

0

16

5.0 mm

Cutting material	
Number of teeth	ļ
Tooth form	
Tooth type	

Cutting material

Number of teeth

Cutting material

Number of teeth

Tooth form

Tooth type

Tooth form

Tooth type

CoolCut CC

CoolCut CC

ollar diameter	425.0
ollar thickness	4.1

HDS-No. 13999

ESEF	
200.0 mm	
6.0 mm	
2	
	200.0 mm 6.0 mm

HDS-No. 10930

SZF
mm
mm

34

тст

тст

18+6

F

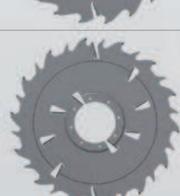
4

тст

24+6

F

4


57+6 F 4

TCT- and ST-Circular saw blades

STABILO Octo dCC

Dimensions	
Diameter	555.0 mm
Kerf	5.5 mm
Saw body thickness	4.1 mm
Bore	120.0 mm
Key ways	0
Pin-/countersunk ho	oles 8

Cutting material
Number of teeth
Tooth form
Tooth type

AST-Type Collar diameter Collar thickness

SEF
mm
mm

HDS-No. 14045

CoolCut dCC

HDS-No. 10014

Dimensions			
Diameter	595.0 mm		
Kerf	5.4 mm		
Saw body thickness	4.2 mm		
Bore	150.0 mm		
Key ways	0		
Countersunk-/			

STABILO Octo dCC Plus

6+6

Cutting material	тст
Number of teeth	22+8
Tooth form	F
Tooth type	4 Plus

AST-Type	ESEF
Collar diameter	200.0 mm
Collar thickness	7.2 mm

HDS-No. 12190

	STABILO Octo		
6	Dimensions		
	Diameter	630.0 mm	
8	Kerf	5.4 mm	
A	Saw body thickness	3.8 mm	
11	Bore	150.0 mm	
	Key ways	2	
	Pin-/threaded holes	2+8	

threaded holes

Cutting material	тст	AST-
Number of teeth	20+8	Colla
Tooth form	F	Colla
Tooth type	4	

тст

4+10

1 Plus

W

AST-Type	
Collar diamete	r
Collar thicknes	s

ESZF 200.0 mm

7.0 mm

STABILO Deca Plus


Dimensions

Diameter 648.0 mm 5.4 mm Kerf Saw body thickness 3.65 mm Bore 160.0 mm Key ways 0 Pin-/countersunk holes 8

Cutting material	
Number of teeth	1
Tooth form	
Tooth type	2

HDS-No. 11235

AST-Type	ESZF
Collar diameter	220.0 mm
Collar thickness	6.8 mm
Features	
Expansion slots	2

TRIMCUT CIRCULAR SAW BLADES

Trimmed for cutting precision and stability

TRIMCUT is a very robust circular saw blade designed specifically for trimming. TRIMCUT delivers outstanding cutting precision with particularly high stability in trimming square timber and slab timber as well as trimming round timbers.

Along with it, the special saw body and the purposefully incorporated internal tension ensure extremely smooth operation. With the tooth geometry adapted specifically for trimming and cross cutting prevent the bottom of the wood from fraying.

The expansion slots near the tooth area, copper riveted or with end hole, prevent deflection of the circular saw blade on heating, ensuring maximum cutting precision. Additional, optionally copper riveted, vibration-reducing laser patterns in the saw body ensure lasting noise reduction.

The HDS plus factors of TRIMCUT

+ Extremely smooth running

The internal tensioning incorporated into the special saw body styles is the reason for the extremely smooth operation of TRIMCUT. And the smoothness has a positive impact on the stability of the circular saw blade.

Tear-free cutting results

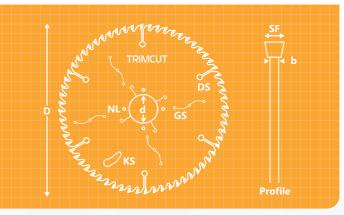

Torn edges are a thing of the past; our TRIMCUT not only cuts the top but also the bottom clean without tearing, guaranteeing a perfect cut in trimming and cutting to length.

+ Deflection-free cuts

Even with the circular saw blade running at maximum load at full speed and expanding from the frictional heat which occurs, expansion slots with end holes or optionally copper riveted, keep TRIMCUT in shape. This effectively eliminates the risk of deflection.

Maximum noise reduction

Riveted laser patterns specifically spread across the saw body and directly absorbing the majority of vibration responsible for the noise level, ensure noise reduction.




TRIMCUT CIRCULAR SAW BLADES

Our "SoWa Sawmill Optimised Tool Design" ensures you will receive a TRIMCUT customised to your specific requirements.

When designing the blade, in addition to the technical characteristics such as machine model, bore and bore pattern, we particularly incorporate your desired cutting quality. Your TRIMCUT will therefore provide maximum efficiency cuts at your sawmill.

b Saw body thickness . D Diameter . d Bore . DS Expansion slot GS Noise reduction slot . KS Cooling slot . NL Pin hole . SF Kerf

TRIMCUT

Dimensions		
Diameter	550.0	mm
Kerf	4.0	mm
Saw body thickness	2.8	mm
Bore	30.0	mm
Key ways		0
Pin-/countersunk he	oles	0

Cutting material
Number of teeth
Tooth form
Tooth type

TCT 96 W 4

TCT 108 W PV

HDS-No. 12193

Features	
Expansion slots	6
with copper rivet	0
Noise reduction slots	12
with copper rivet	0
Cooling slots	0

TRIMCUT

Dimensions

Diameter	600.0	mm
Kerf	5.7	mm
Saw body thickness	4.0	mm
Bore	30.0	mm
Key ways		0
Pin-/countersunk he	oles	4

Cutting material
Number of teeth
Tooth form
Tooth type

HDS-No. 13968

Features	
Expansion slots	8
with copper rivet	0
Noise reduction slots	4
with copper rivet	0
Cooling slots	0

TRIMCUT CIRCULAR SAW BLADES

TCT- and ST-Circular saw blades

TRIMCUT

Cutting material
Number of teeth
Tooth form
Tooth type

тст 102 F 4

тст

96

W

4

HDS-No. 11604

Features	
Expansion slots	6
with copper rivet	6
Noise reduction slots	12
with copper rivet	0
Cooling slots	0

HDS-No. 12081

6

TRIMCUT

Dimensions Diameter 650.0 mm 5.8 mm Kerf Saw body thickness 4.0 mm Bore 30.0 mm Key ways

Pin-/countersunk holes

0

2

Cutting material	тст
Number of teeth	72
Tooth form	W
Tooth type	4

Features Expansion slots

with copper rivet 0 Noise reduction slots 0 with copper rivet 0 Cooling slots 6

TRIMCUT

Dimensions

Diameter 730.0 mm Kerf 6.5 mm Saw body thickness 4.6 mm Bore 30.0 mm Key ways 0 Pin-/countersunk holes 2

Cutting material
Number of teeth
Tooth form
Tooth type

HDS-No. 13249

Features	
Expansion slots	6
with copper rivet	0
Noise reduction slots	0
with copper rivet	0
Cooling slots	0

CROSSCUT

Dimensions	2000 x 12.90/9.0 x 75 mm
Teeth	66 interchangeable TCT inserts Tooth form Hollow tooth . Tooth type 4
Features	6 expansion slots with copper rivets 6 noise reduction slots with copper rivets
HDS-No.	10116

Designed for rough log yard applications

CROSSCUT is designed for log yard chopping using interchangeable tungsten carbide tipped inserts. The standard hollow-ground tungsten carbide tooth has a cutting width of 12.9 mm. Varying inserts with ground bevel angle, yielding the classic Alternate Top Bevel tooth, may optionally be used. The positive locking saw body connection with only one rivet each delivers quick and easy inserts changes. Copper riveted expansion slots and triple copper riveted, vibration-reducing laser patterns yield maximum noise reduction.

Its robust 9 mm thick saw body ensures the CROSSCUT also remains stable under cross forces. It is further true-running and smooth, yielding a significantly longer service life.

The HDS plus factors of CROSSCUT

Improved performance under cross-forces

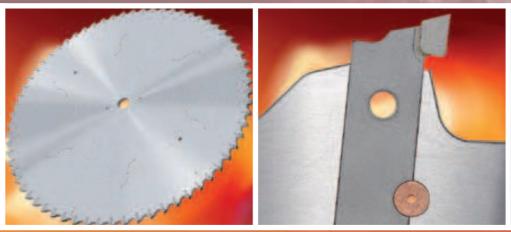
The very robust, 9 mm thick saw body style increases stability to cross-forces which may occur in chopping. Its stability allows CROSSCUT to effectively absorb these impacts.

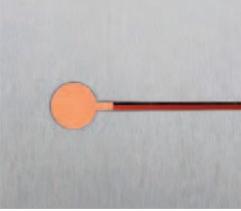
Improved true-running precision

The single piece inserts milled using CNC precision, which accurately fit the precisely milled pockets in the saw body with guide, result in particularly high accuracy, ensuring improved true-running. This significantly extends the service life of CROSSCUT.

Quick and easy tooth carrier unriveting

Only one copper rivet guarantees the positive locking saw body connection of each individual inserts. This allows for quick and easy inserts changes.

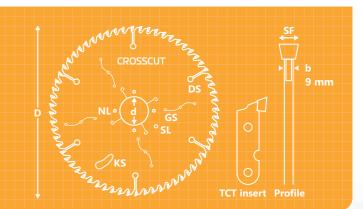

Maximum noise reduction


The expansion slots with copper rivets at the end and the triple copper riveted laser patterns, which effectively absorb a majority of the vibration which occurs, effectively lessen noise in the CROSSCUT.

HDS-Regeneration

We will regenerate your inserts to our strict quality specifications or – in a hurry – we will exchange them for regenerated inserts.

We manufacture CROSSCUT saw blades Springer, Holtec, and Linck machines, among others.



Our "SoWa Sawmill Optimised Tool Design" ensures you receive a CROSSCUT customised for use in your log yard.

The design not only incorporates the technical characteristics such as machine model, bore and bore pattern, but of course also the logs which will be cut. The robust CROSSCUT therefore "works" with exceptionally high stability.

b Saw body thickness . D Diameter . d Bore . DS Expansion slot GS Noise reduction slot . KS Cooling slot . NL Pin hole . SF Kerf SL Countersunk hole

HDS-No. 14538

тст

44

Н

4

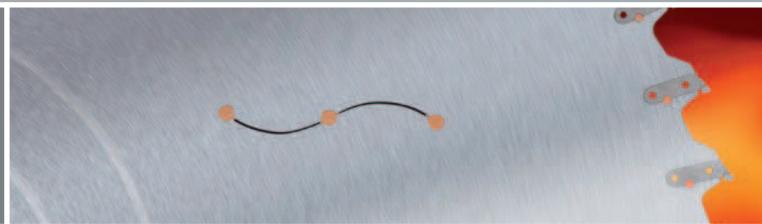
Cutting material

Number of teeth

Tooth form

Tooth type

TCT-Circular saw blades



CROSSCUT

Diameter1300.0 mmKerf12.9 mmSaw body thickness9.0 mmBore701.0 mmKey ways0Pin-/countersunk holes2x11

Features

Expansion slots	0	Noise reduction slots	0
with copper rivet	0	with copper rivet	0
Cooling slots	0		

TCT-Circular saw blades

CROSSCUT

Dimensions	
Diameter	2000.0 mm
Kerf	12.9 mm
Saw body thickne	ess 9.0 mm
Bore	135.0 mm
Key ways	0
Pin-/countersunk holes 6	
Features	
Expansion slots	6

Expansion slots	6
with copper rivet	6
Cooling slots	0

	HDS-No	. 15557
Cutting mat	erial	тст
Number of t	eeth	66
Tooth form		Н

4

4

4

HDS-No. 14891

тст

80

W

4

Tooth type

Noise reduction slots

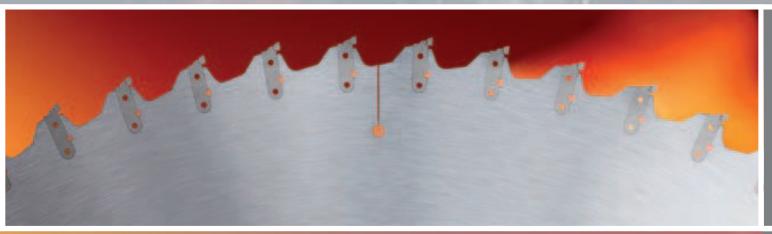
with copper rivet

Cutting material

Number of teeth

Tooth form

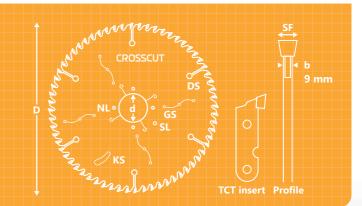
Tooth type


CROSSCUT

Dimensions

	-	
Diameter	2000.0 mm	
Kerf	13.0 mm	
Saw body t	nickness 9.0 mm	
Bore	75.0 mm	
Key ways	0	
Pin-/countersunk holes		

Features


Expansion slots	8	Noise reduction slots	6
with copper rivet	8	with copper rivet	6
Cooling slots	0		

Our "SoWa Sawmill Optimised Tool Design" ensures you receive a CROSSCUT customised for use in your log yard.

The design not only incorporates the technical characteristics such as machine model, bore and bore pattern, but of course also the logs which will be cut. The robust CROSSCUT therefore "works" with exceptionally high stability.

b Saw body thickness . D Diameter . d Bore . DS Expansion slot GS Noise reduction slot . KS Cooling slot . NL Pin hole . SF Kerf SL Countersunk hole

HDS-No. 15434

HDS-No. 10464

тст

88

н

4

Cutting material

Number of teeth

Tooth form

Tooth type

TCT-Circular saw blades

CROSSCUT

Dimensions		Cutting material	тст
Diameter	2438.4 mm	Number of teeth	90
Kerf	14.0 mm	Tooth form	Н
Saw body thickn	ess 9.0 mm	Tooth type	4
Bore	120.0 mm	lootin type	
Key ways	0		
Pin-/countersunl	k holes 12+3		
Features			
Expansion slots	6	Noise reduction slots	3
with copper rive	6	with copper rivet	3
Cooling slots	0		

CROSSCUT

Dimensions		
Diameter	2500.0	mm
Kerf	12.9	mm
Saw body thicknes	ss 9.0	mm
Bore	120.0	mm
Key ways		0
Pin-/countersunk	holes	1+6

Features

Expansion slots	8	Noise reduction slots	2
with copper rivet	8	with copper rivet	2
Cooling slots	0		

TCT-Insert

	TCT-Insert			TCT-Insert	
	Kerf	12.9 mm		Kerf	14.0 mm
	Tooth form	Н		Tooth form	Н
	Saw body	9 mm		Saw body	9 mm
	System	HDS		System	HDS
	HDS-No.	10117		HDS-No.	13455
	TCT-Insert			TCT-Insert	
	Kerf	13.0 mm		Kerf	13.0 mm
	Tooth form	W left		Tooth form	W right
	Saw body	9 mm		Saw body	9 mm
	System	HDS	1.5.1	System	HDS
	HDS-No.	12682		HDS-No.	12681
	TCT-Insert			Copper hollow ri	vet
	Kerf	12.9 mm		Length	11 mm
	Tooth form	Н	-	Diameter	8 mm
	Saw body	7 mm		Saw body	9 mm
	System	Felde		System	HDS
	HDS-No.	11229		HDS-No.	10118

