DirectCure UV CURING WITHOUT PHOTOINITIATORS

A significant disadvantage of conventional UV Curing is the mandatory use of photoinitiators. It is not uncommon that they migrate from the product, which can lead to major problems, especially in the food packaging industry. The **DirectCure technology** represents an innovative and cost-efficient alternative to electron beam curing (EB) and makes a **photoinitiator free UV** curing possible. In this process, the polymerization and crosslinking of acrylates are triggered directly by photons. The "chromophore" required for the formation of radicals is in this case the acrylate molecule itself.

A D V A N T A G E S

The design and handling of the DirectCure are similar to **conventional UV curing**. Therefore the curing of conventional coatings is possible without any configuration change.

This technology guarantees simultaneously high gloss crosslinking levels and a **better durability**.

Thus, the photoinitiator free curing is a **less expensive alternative** to electron beam curing.

Existing lamps can be easily replaced with DirectCure.

The **DirectCure** technology **can be combined with the** excimer matting IOT EXCIRAD172 nm.

ENVIRONMENTALLY FRIENDLY AND SAFE

- → No photoinitiators and solvents, therefore minimal migration levels
- → Complies with the statutory thresholds for food packaging according to EU-Regulation of 10/2011
- No extensive radiation shield necessary compared to the electron beam curing

DirectCure radiator and electric cabinet

In order to test our products within your production environment and to become familiar with the system, we offer an assortment of different rental equipment with nitrogen inerting:

rental systems 175 mm – 2320 mm

ExciTrack VUV Dosimeter for throughput Simple data analysis on PC via USB-connection

- → Full Service from the first preliminary tests to production
- → Worldwide sales of standard solutions for the activation, matting and hardening of surfaces
- → Optional retrofitting of already existing production equipment with the IOT technology, or construction of a complete new system (on conveyor belt or roller)
- > Very high standard of technology due to many years of experience in conception and construction of equipment
- > Test without obligation prior to the realization in our own laboratory, thereby testing and optimization of the interaction of coating formulation, substrate, Excirad-lamps and UV dryer with your materials
- → Rental of stand-alone equipment for testing IOT components at your company

IOT-Oxy Portable oxygen analyzer

IOT – Innovative Oberflächentechnologien GmbH

Wissenschaftspark Leipzig, Gebäude 33.0 Permoserstraße 15 04318 Leipzig

Telefon +49(0)3412352916 Telefax +49(0) 3 41 2 35 24 53 info@iot-gmbh.de

www.iot-gmbh.de

INNOVATIVE OBERFLÄCHENTECHNOLOGIEN GMBH

EXCIRAD 172 SUPER MATT SURFACES

DirectCure UV CURING WITHOUT PHOTOINITIATORS

Photon Activation ACTIVATION AND CLEANING

UV Inert UV CURING UNDER NITROGEN

EXCIRAD 172 SUPER MATT SURFACES

With the **EXCIRAD** super matt surfaces can be produced without matting agents. The 172 nanometer radiation forms a fine microstructure on the surface of the still uncured coating layer. Afterwards it will be dried by DirectCure lamps or conventional drying methods such as **UV Hg lamps**, **LED** or **electron beams** are used for this purpose. The wavy surface generated on the substrate spreads the incoming light – The surface appears matt.

ADVANTAGES

The mechanical and chemical resistance is increased due to the additional activation of carbonyl groups for crosslinking. This is also possible for post irradiation of glossy surfaces.

An additional advantage is the improvement of the diffusion barrier and there is no need for photoinitiators, the polymer matrix is not disturbed by matting agents.

Conventional with matting agents

EXCIRAD 172

ENERGY EFFICIENCY

- \rightarrow Very low energy consumption of only 25 W/cm, as only the required wavelength is generated
- → Genuine "cold" lamps, so that there is no thermal stress to the substrates
- → Output power continuously adjustable
- → No standby-power consumption, since there is no warm up necessary
- → Fast switching between matt and gloss products possible

BEST OPTIC

- Super matt surfaces for gloss levels between 1 and 20
- Minimal gloss deviation below level of 0.5
- Folding textures can be adjusted from super fine to very coarse

BEST HAPTIC

- → Smooth folding textures instead of sandpaper-like matting agent
- → Unique soft-touch effects are possible

APPLICATION

The matting of coatings by excimer can be done on all surfaces such as wood, stone, metal, decorative paper and stamping foils as well as laminate films for floor coverings, on furniture and in the automotive industry. The integration of the EXCIRAD 172 into existing systems is possible without difficulty.

Matting process with EXCIRAD 172 Insertion system EXCIRAD 172

TECHNICAL SPECIFICATIONS

Irradiation width 100 - 2.700 mm freely selectable -> Wavelengths 172 nm or 222 nm -> Lamp power 5 - 25 W/cm -> Dose rate 10 - 30 mW/cm² -> Production speeds up to 100 m/min per lamp -> Higher web speeds with multiple emitters possible -> Cassette insertion system for quick and easy lamp replacement -> Easy connection of the products by quick couplings

UV Inert UV CURING UNDER NITROGEN

UV curing in atmospheric air always implies presence of oxygen in the process chamber. But the oxygen inhibits the curing (polymerization) of the coating and thus reduces significantly the efficiency of the drying process. By purging the processing chambers with the inert gas nitrogen, oxygen can be almost entirely removed (down to 0,003 %/30 ppm). UV lamps can be operated with a reduced power, while simultaneously improving the surface guality.

ADVANTAGES

The **production rate** can be increased while maintaining the same lamp power. Alternatively, the lamp power can be reduced to one third while maintaining the same production rate.

The material has a **higher scratch and chemical resistance**. A superior curing is achieved with problematic colours like opaque white.

The reduction of photoinitiators lead to a reduction of odors and in the tendency to yellow. The reduction of global **migration** is particularly important in the food industry.

The IOT UV inerting systems can be combined with all UV dryers and integrated or retrofitted into existing systems on request.

Inert chamber with EXCIRAD 172 and UV lamps on conveyor belt

EFFICIENT AND SAFE

- → Low nitrogen consumption by optimizing the inerting chamber
- → CFD optimized nozzle system
- → Safe production process because of continuous residual oxygen measurements and control
- → Contact-free passage of the substrate for food applications
- → Simple system operation and monitoring via touchpad
- → Compact chamber design

The slide-in system allows a quick replacement or cleaning of the quartz

APPLICATIONS

- → Printing and coating industry, for example for flexo, screen, offset and digital printing
- → Furniture coverings
- Labels
- → Floor laminate, PVC and non-PVC floorings
- → Facade elements
- → High speed roll-to-roll processes, straight pass and on cooling roller
- Siliconization

Photon Activation ACTIVATION AND CLEANING

Many materials have a too low surface energy to print them or stick them together. The **Photon Activation** Chamber (PAC) represents the new alternative to the conventional corona or plasma treatment. With a VUV-ozone treatment the **organic impurities**, which would otherwise act as a separation layer, were removed. The specific UV radiation generates additional polar groups that lead to a sustained increase in the **polar** surface energy. The results are a uniform coating and an optimum adhesion.

ADVANTAGES

Since this is a cold process, in which there is virtually no heat **input**, it is also suitable for heat sensitive materials such as plastics, and thin foils.

The low penetration depth of the UV radiation prevents any **damage** to the deeper layers of the material.

The effect is maintained for months because no volatile molecular fragments are formed.

BACKGROUND

With the **"Photon Activation Chamber"** bonds in polymers are broken up. They react with ozone and oxygen radicals, which are formed from the ambient air oxygen by the irradiation. In order to achieve high production speeds, as required for example in the printing industry, the oxygen content in the treatment chamber will be adjusted accordingly.

AT A GLANCE

- → Irradiation also of 3D shapes
- → UV alternative to corona treatment
- → No back-side effect

Treated area with higher surface energy

Untreated area with low surface energy